Question		Answer	Marks	Guidance
1	(i)	$\frac{1}{(1+2 x)(1-x)}=\frac{A}{1+2 x}+\frac{B}{1-x} \Rightarrow 1=A(1-x)+B(1+2 x)$ $\begin{aligned} & x=1 \Rightarrow 3 B=1, B=1 / 3 \\ & x=-1 / 2 \Rightarrow 1=3 A / 2, A=2 / 3 \end{aligned}$	M1 A1 A1 [3]	Cover up, substitution or equating coefficients isw after correct A and B stated
1	(ii)	$\begin{aligned} & 1+x-2 x^{2}=(1+2 x)(1-x) \\ & \Rightarrow \quad \int_{3}^{1} \int\left[\frac{2}{(1+2 x)}+\frac{1}{1-x}\right] \mathrm{d} x=\int k \mathrm{~d} t \\ & \lambda \ln (1+2 x)+\mu \ln (1-x)=k t(+c) \\ & \Rightarrow \quad \ln (1+2 x)-\ln (1-x)=3 k t(+c) \end{aligned}$ When $t=0, x=0 \Rightarrow c=0$ $\begin{aligned} & \Rightarrow \quad \ln \left(\frac{1+2 x}{1-x}\right)=3 k t \\ & \Rightarrow \quad \begin{array}{c} 1+2 x \\ 1-x \end{array}=\mathrm{e}^{3 k t} \end{aligned}$	B1 M1 A1 A1 B1 M1 A1 [7]	May be seen in separation of variables (may be implied by later working) - implied by the use of factors $(1+2 x)$ and $(1-x)$ Separating variables and substituting partial fractions. If no subsequent work integral signs needed, but allow omission of $d x$ or $\mathrm{d} t$, but must be correctly placed if present Any non-zero constant λ, μ www oe (condone absence of c) cao (must follow previous A1) need to show (at some stage) that $c=$ 0 . s a minimum $t=0, x=0, c=0$. Note that $c=\ln (-1)$ (usually from incorrect integration of $(1-x)$) or similar scores B0 Combining both their log terms correctly. Follow through their c . Allow if $c=0$ clearly stated (provided that $c=0$) even if B mark is not awarded, but do not allow if c omitted AG www must have obtained all previous marks in this part

Question			Answer	Marks	Guidance
1	(iii)		$\begin{aligned} & (1+2(0.75)) /(1-0.75)=\mathrm{e}^{3 k} \\ & k=(1 / 3) \ln 10(=0.768(3 \text { s.f. })) \\ & t=\ln (2.8 / 0.1) / 3 k=1.45 \text { hours } \end{aligned}$	M1 A1 A1 [3]	substituting $t=1, x=0.75$ at any stage 3 sf or better 1.45 (or better) or 1 hr 27 mins
1	(iv)		$\begin{aligned} & 1+2 x= \mathrm{e}^{3 k t}-x \mathrm{e}^{3 k t} \\ & \Rightarrow \quad 2 x+x \mathrm{e}^{3 k t}=\mathrm{e}^{3 k t}-1 \\ & \Rightarrow \quad x\left(2+\mathrm{e}^{3 k t}\right)=\mathrm{e}^{3 k t}-1 \\ & \Rightarrow \quad x=\left(\mathrm{e}^{3 k t}-1\right) /\left(2+\mathrm{e}^{3 k t}\right) \\ & \quad=\left(1-\mathrm{e}^{-3 k t}\right) /\left(1+2 \mathrm{e}^{-3 k t}\right)^{*} \end{aligned}$ when $t \rightarrow \infty \quad \mathrm{e}^{-3 k t} \rightarrow 0$ $x=\left(1-\mathrm{e}^{-3 k t}\right) /\left(1+2 \mathrm{e}^{-3 k t}\right) \rightarrow 1 / 1=1$	$\begin{gathered} \text { M1* } \\ \text { M1dep* } \\ \text { A1 } \\ \text { A1 } \\ \text { B1 } \\ \\ {[5]} \end{gathered}$	Multiplying out and collecting x terms (condone one error) Factorising their x terms correctly www (AG) - as AG must be an indication of how previous line leads to the required result (eg stating or showing multiplying by $\mathrm{e}^{-3 k t}$) clear indication that $\mathrm{e}^{-3 k t} \rightarrow 0$ so, for example, accept as a minimum $(x \rightarrow) \frac{1-0}{1+0}=1$ or $\mathrm{e}^{-3 k t} \rightarrow 0 \Rightarrow(x \rightarrow) 1$ (NB substitution of large values of t with no further explanation is B 0)
		OR	$\begin{aligned} & \frac{1-x}{1+2 x}=\mathrm{e}^{-3 k t} \\ & 1-x=\mathrm{e}^{-3 k t}+2 x \mathrm{e}^{-3 k t} \\ & x\left(1+2 \mathrm{e}^{-3 k t}\right)=1-\mathrm{e}^{-3 k t} \\ & x=\left(1-\mathrm{e}^{-3 k k}\right) /\left(1+2 \mathrm{e}^{-3 k t}\right) * \end{aligned}$		Multiplying up and expanding (condone one error) Factorising their x terms correctly www (AG) - final B mark as in scheme above

Question		Answer	Marks	Guidance
2	(i)	EITHER $x=\mathrm{e}^{3 t}, y=t \mathrm{e}^{2 t}$ $\begin{aligned} & \mathrm{d} y / \mathrm{d} t=2 t \mathrm{e}^{2 t}+\mathrm{e}^{2 t} \\ & \Rightarrow \quad \mathrm{~d} y / \mathrm{d} x=\left(2 t \mathrm{e}^{2 t}+\mathrm{e}^{2 t}\right) / 3 \mathrm{e}^{3 t} \end{aligned}$ when $t=1, \mathrm{~d} y / \mathrm{d} x=3 \mathrm{e}^{2} / 3 \mathrm{e}^{3}=1 / \mathrm{e}$	B1 M1 A1 A1	soi Their $\mathrm{d} y / \mathrm{d} t \div \mathrm{d} x / \mathrm{d} t$ in terms of t oe cao allow for unsimplified form even if subsequently cancelled incorrectly ie can isw cao www must be simplified to $1 / \mathrm{e}$ oe
		OR		
		$\begin{aligned} & 3 t=\ln x, y=\frac{\ln x}{3} \mathrm{e}^{2 / 3 \ln x}=\frac{x^{2 / 3} \ln x}{3} \\ & \mathrm{~d} y / \mathrm{d} x=\frac{1}{3} x^{2 / 3} 1+\ln x \frac{2}{9} x^{-1 / 3} \\ & =\frac{1}{3 \mathrm{e}^{t}}+\begin{array}{l} 2 t \\ 3 \mathrm{e}^{t} \end{array} \\ & \mathrm{~d} y / \mathrm{d} x=1 / 3 \mathrm{e}+2 / 3 \mathrm{e}=1 / \mathrm{e} \end{aligned}$	B1 M1 A1 A1 [4]	Any equivalent form of y in terms of x only Differentiating their y provided not eased ie need a product including $\ln k x$ and x^{p} and subst $x=\mathrm{e}^{3 t}$ to obtain $\mathrm{d} y / \mathrm{d} x$ in terms of t oe cao www cao exact only must be simplified to $1 / \mathrm{e}$ or e^{-1}
2	(ii)	$\begin{aligned} & 3 t=\ln x \Rightarrow t=(\ln x) / 3 \\ & y=(\ln x) / 3 \mathrm{e}^{(2 \ln x) / 3} \\ & y=\frac{1}{3} x^{2} \ln x \end{aligned}$	B1 M1 A1 [3]	Finding t correctly in terms of x Subst in y using their t Required form $a x^{b} \ln x$ only NB If this work was already done in 5(i), marks can only be scored in 5(ii) if candidate specifically refers in this part to their part (i).

Question		Answer	Marks	Guidance
3	(i)	Either $h=(1-1 / 2 A t)^{2} \Rightarrow \mathrm{~d} h / \mathrm{d} t=-A(1-1 / 2 A t)$ $=-A \sqrt{ } h$ when $t=0, h=(1-0)^{2}=1$ as required OR $\begin{aligned} & \int \frac{\mathrm{d} h}{\sqrt{h}}=\int-A \mathrm{~d} t \\ & 2 h^{1 / 2}=-A t+c \\ & h=\left(\frac{-A t+c}{2}\right)^{2} \text { at } t=0, h=1,1=(c / 2)^{2} \Rightarrow c=2, h=(1-A t / 2)^{2} \end{aligned}$	M1 A1 B1 M1 A1 B1 [3]	Including function of a function, need to see middle step AG Separating variables correctly and integrating Including c. [Condone change of c.] Using initial conditions AG
3	(ii)	When $t=20, h=0$ $\Rightarrow 1-10 A=0, A=0.1$ When the depth is $0.5 \mathrm{~m}, 0.5=(1-0.05 t)^{2}$ $\Rightarrow \quad 1-0.05 t=\sqrt{ } 0.5, t=(1-\sqrt{ } 0.5) / 0.05=5.86 \mathrm{~s}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \\ & {[4]} \end{aligned}$	Subst and solve for A cao substitute $h=0.5$ and their A and solve for t www cao accept 5.9

Question		Answer	Marks	Guidance
3	(iii)	$\begin{aligned} & \mathrm{d} h \\ & \mathrm{~d} t=-B \frac{\sqrt{h}}{(1+h)^{2}} \\ & \Rightarrow \int \begin{array}{c} (1+h)^{2} \\ \sqrt{h} \end{array} \mathrm{~d} h=-\int B \mathrm{~d} t \end{aligned}$	M1	separating variables correctly and intend to integrate both sides (may appear later) [NB reading $(\mathbf{1}+\boldsymbol{h})^{\mathbf{2}}$ as $\mathbf{1}+\boldsymbol{h}^{\mathbf{2}}$ eases the question. Do not mark as a MR] In cases where $(1+h)^{2}$ is MR as $1+h^{2}$ or incorrectly expanded, as say $1+h+h^{2}$ or $1+h^{2}$, allow first M1 for correct separation and attempt to integrate and can then score a max of M1M0A0A0A1 (for $-B t+c$) A0A0, max 2/7.
		EITHER, LHS		
		$\int \frac{1+2 h+h^{2}}{\sqrt{h}} \mathrm{~d} h$ $=\int\left(h^{-1 / 2}+2 h^{1 / 2}+h^{3 / 2}\right) \mathrm{d} h$	M1 A1	expanding $(1+h)^{2}$ and dividing by $\sqrt{ } h$ to form a one line function of h (indep of first M1) with each term expressed as a single power of h eg must simplify say $1 / \sqrt{ } h+2 h / \sqrt{ } h+h^{2} \sqrt{ } h$, condone a single error for M1 (do not need to see integral signs) $h^{-1 / 2}+2 h^{1 / 2}+h^{3 / 2}$ cao dep on second M only -do not need integral signs
		OR ,LHS, EITHER		
		$\left(1+2 h+h^{2}\right) 2 h^{1 / 2}-\int 2 h^{1 / 2}(2+2 h) \mathrm{d} h$ OR $h^{1 / 2}+h^{3 / 2}+\frac{h^{5 / 2}}{3}+\int_{2}^{1} h^{-3 / 2}\left(h+h^{2}+\frac{h^{3}}{3}\right) \mathrm{d} h$	M1 A1	using $\int u d v=u v-\int v \mathrm{~d} u$ correct formula used correctly, indep of first M1 condone a single error for M1if intention clear cao oe
		$\left.\begin{array}{l} 2 h^{1 / 2}+\frac{4 h^{3 / 2}}{3}+\frac{2 h^{5 / 2}}{5} \\ \quad=-B t+c \end{array} \begin{array}{l} \Rightarrow 2 h^{1 / 2}+4 h^{3 / 2} / 3+2 h^{5 / 2} / 5=-B t+c \\ \text { When } t=0, h=1 \Rightarrow c=56 / 15 \end{array}\right] \begin{aligned} & \Rightarrow h^{1 / 2}\left(30+20 h+6 h^{2}\right)=56-15 B t * \end{aligned}$	A1 A1 A1 A1 [7]	cao oe, both sides dependent on first M1 mark cao need $-B t$ and c for second A1 but the constant may be on either side from correct work only (accept 3.73 or rounded answers here but not for final A1) or $c=-56 / 15$ if constant on opposite side. NB AG must be from all correct exact work including exact \boldsymbol{c}.

	Ques	Answer	Marks	Guidance
3	(iv)	$\begin{aligned} & h=0 \text { when } t=20 \\ & \Rightarrow B=56 / 300=0.187 \\ & \text { When } h=0.5 \quad 56-2.8 t=29.3449 \ldots \\ & \Rightarrow t=9.52 \mathrm{~s} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \\ & {[4]} \end{aligned}$	Substituting $h=0, t=20$ Accept 0.187 Subst their $h=0.5$, ft their B and attempt to solve Accept answers that round to 9.5 s www.

	ues	Answer	Marks	Guidance
4	(i)	$\begin{aligned} & v \mathrm{~d} v / \mathrm{d} x+4 x=0 \\ & \int v \mathrm{~d} v=-\int 4 x \mathrm{~d} x \\ & 1 / 2 v^{2}=-2 x^{2}+c \\ & \text { When } x=1, v=4 \text {, so } c=10 \\ & \text { so } \quad v^{2}=20-4 x^{2} * \end{aligned}$	M1 A1 B1 A1 [4]	separating variables and intending to integrate oe condone absence of c. [Not immediate $\mathrm{v}^{2}=-4 \mathrm{x}^{2}(+\mathrm{c})$] finding c, must be convinced as AG, need to see at least the statement given here oe (condone change of c) AG following finding c convincingly Alternatively, SC $v^{2}=20-4 x^{2}$, by differentiation, $2 v \mathrm{~d} v / \mathrm{d} x=-8 x$ $v \mathrm{~d} v / \mathrm{d} x+4 x=0 \text { scores B2 }$ if , in addition, they check the initial conditions a further B1 is scored (ie $16=20-4$). Total possible 3/4.
4	(ii)	$\begin{aligned} & x=\cos 2 t+2 \sin 2 t \\ & \text { when } t=0, x=\cos 0+2 \sin 0=1^{*} \\ & v=\mathrm{d} x / \mathrm{d} t=-2 \sin 2 t+4 \cos 2 t \\ & v=4 \cos 0-2 \sin 0=4^{*} \end{aligned}$	B1 M1 A1 A1 [4]	AG need some justification differentiating, accept $\pm 2, \pm 4$ as coefficients but not $\pm 1, \pm 2$ and not $\pm 1 / 2, \pm 1$ from integrating cao ww AG

Question		Answer	Marks	Guidance
4	(iii)	$\begin{aligned} & \cos 2 t+2 \sin 2 t=R \cos (2 t-\alpha)=R(\cos 2 t \cos \alpha+\sin 2 t \sin \alpha) \\ & R=\sqrt{5} \\ & R \cos \alpha=1, R \sin \alpha=2 \\ & \tan \alpha=2, \\ & \alpha=1.107 \\ & x=\sqrt{ } 5 \cos (2 t-1.107) \\ & v=-2 \sqrt{ } 5 \sin (2 t-1.107) \end{aligned}$	B1 M1 M1 A1 A1	SEE APPENDIX 1 for further guidance or 2.24 or better (not \pm unless negative rejected) correct pairs soi correct method cao radians only, 1.11 or better (or multiples of π that round to 1.11) differentiating or otherwise, ft their numerical R, α (not degrees) required form SC B1 for $v=\sqrt{ } 20 \cos (2 t+0.464)$ oe
		EITHER $v^{2}=20 \sin ^{2}(2 t-\alpha)$ $20-4 x^{2}=20-20 \cos ^{2}(2 t-\alpha)$ $\begin{aligned} & =20\left(1-\cos ^{2}(2 t-\alpha)\right)=20 \sin ^{2}(2 t-\alpha) \\ \text { so } \quad v^{2} & =20-4 x^{2} \end{aligned}$	M1 A1	squarin their v (if of required form with same α as x), and x, and attempting to show $v^{2}=20-4 x^{2}$ ft their R, α (incl. degrees) [α may not be specified]. cao www (condone the use of over-rounded α (radians) or degrees)
		$\begin{aligned} & \text { OR multiplying out } v^{2}=(-2 \sin 2 t+4 \cos 2 t)^{2} \\ & =4 \sin ^{2} 2 t-16 \sin 2 t \cos 2 t+16 \cos ^{2} 2 t \\ & \text { and } 4 x^{2}=4\left(\cos ^{2} 2 t+4 \sin 2 t \cos 2 t+4 \sin ^{2} 2 t\right) \\ & =4 \cos ^{2} 2 t+16 \sin 2 t \cos 2 t+16 \sin ^{2} 2 t(\text { need middle term }) \\ & \text { and attempting to show that } \\ & v^{2}+4 x^{2}=4\left(\sin ^{2} 2 t+\cos ^{2} 2 t\right)+16\left(\cos ^{2} 2 t+\sin ^{2} 2 t\right) \\ & \quad=4+16=20\left(\text { or } 20-4 x^{2}=v^{2}\right) \text { oe } \\ & \text { so } \quad v^{2}=20-4 x^{2} \end{aligned}$	M1 A1 [7]	differentiating to find v (condone coefficient errors), squaring v and x and multiplying out (need attempt at middle terms) and attempting to show $v^{2}=20-4 x^{2}$ cao www

	Quest	Answer	Marks	Guidance
4	(iv)	$\begin{aligned} & x=\sqrt{ } 5 \cos (2 t-\alpha) \text { or otherwise } \\ & x \text { max }=\sqrt{5} \\ & \text { when } \cos (2 t-\alpha)=1, \\ & 2 t-1.107=0 \\ & 2 t=1.107 \\ & t=0.55 \end{aligned}$	B1 M1 A1 [3]	ft their R oe (say by differentiation) ft their α in radians or degrees for method only cao (or answers that round to 0.554)

Question		answer	Marks	Guidance
5	(i)		B1 M1 A1 A1 [4]	cao condone different k (allow MR B1 for $=k V^{2}$) $2(1 / 2 k t+c) \times$ constant multiple of k (or from multiplying out oe; or implicit differentiation) cao www any equivalent form (including unsimplified) Allow SCB2 if $V=(1 / 2 k t+c)^{2}$ fully obtained by integration including convincing change of constant if used Can score B1 M0 SCB2
	(ii)	$(1 / 2 k+c)^{2}=10000 \Rightarrow 1 / 2 k+c=100$ $\begin{aligned} & (k+c)^{2}=40000 \Rightarrow \quad \begin{array}{c} k+c=200 \\ \Rightarrow \\ \Rightarrow \\ \Rightarrow \\ \Rightarrow \\ \Rightarrow \\ \quad k=1 / 2 k=100 \\ k=(100 t)^{2}=10000 t^{2} \end{array} \end{aligned}$	B1 B1 M1 A1 [4]	substituting any one from $t=1, V=10,000$ or $t=0, V=0$ or $t=2$, $V=40,000$ into squared form or rooted form of equation (Allow $-/ \pm 100$ or $-/ \pm 200$) substituting any other from above Solving correct equations for both www (possible solutions are (200,0), (-200,0), (600, -400), (-600,400) (some from -ve root)) either form www SC B2 for $V=(100 t)^{2}$ oe stated without justification SCB4 if justification eg showing substitution SC those working with $(k+c)^{2}=30,000$ can score a maximum of B1B0 M1A0 (leads to $k \approx 146$, c ≈ 26.8)

