	Quest	ion	Answer	Marks	Guidance
1	(i)		$\frac{1}{(1+2x)(1-x)} = \frac{A}{1+2x} + \frac{B}{1-x} \Longrightarrow 1 = A(1-x) + B(1+2x)$		
				M1	Cover up, substitution or equating coefficients
			$x = 1 \Longrightarrow 3B = 1, B = 1/3$	A1	
			$x = -\frac{1}{2} \Longrightarrow 1 = 3A/2$, $A = 2/3$	A1	isw after correct A and B stated
				[3]	
1	(ii)		$1 + x - 2x^2 = (1 + 2x)(1 - x)$	B1	May be seen in separation of variables (may be implied by later working) – implied by the use of factors $(1 + 2x)$ and $(1 - x)$
			$\Rightarrow \frac{1}{3} \int \left[\frac{2}{(1+2x)} + \frac{1}{1-x}\right] dx = \int k dt$	M1	Separating variables and substituting partial fractions. If no subsequent work integral signs needed, but allow omission of dx or dt , but must be correctly placed if present
			$\lambda \ln(1+2x) + \mu \ln(1-x) = kt(+c)$	Al	Any non-zero constant λ, μ
			$\Rightarrow \ln(1+2x) - \ln(1-x) = 3kt (+c)$	A1	www oe (condone absence of c)
			When $t = 0, x = 0 \Rightarrow c = 0$	B1	cao (must follow previous A1) need to show (at some stage) that $c = 0$. s a minimum $t = 0$, $x = 0$, $c = 0$. Note that $c = \ln(-1)$ (usually from incorrect integration of $(1 - x)$) or similar scores B0
			$\Rightarrow \ln\left(\frac{1+2x}{1-x}\right) = 3kt$	M1	Combining both their log terms correctly. Follow through their c. Allow if $c = 0$ clearly stated (provided that $c = 0$) even if B mark is not awarded, but do not allow if c omitted
			$\Rightarrow \frac{1+2x}{1-x} = e^{3kt} *$	A1	AG www must have obtained all previous marks in this part
				[7]	

	Quest	ion	Answer	Marks	Guidance
1	(iii)		$(1+2(0.75))/(1-0.75)=e^{3k}$	M1	substituting $t = 1, x = 0.75$ at any stage
			$k = (1/3)\ln 10 (= 0.768 (3 \text{ s.f.}))$	A1	3sf or better
			$t = \ln(2.8/0.1)/3k = 1.45$ hours	A1	1.45 (or better) or 1 hr 27 mins
				[3]	
1	(iv)		$1 + 2x = \mathrm{e}^{3kt} - x\mathrm{e}^{3kt}$		
			$\Rightarrow 2x + xe^{3kt} = e^{3kt} - 1$	M1*	Multiplying out and collecting x terms (condone one error)
			$\Rightarrow x(2+e^{3kt})=e^{3kt}-1$	M1dep*	Factorising their x terms correctly
			$\Rightarrow x = (e^{3kt} - 1)/(2 + e^{3kt})$	A1	
			$=(1-e^{-3kt})/(1+2e^{-3kt})$ *	A1	www (\mathbf{AG}) – as AG must be an indication of how previous line leads
					to the required result (eg stating or showing multiplying by e^{-3kt})
			when $t \to \infty$ $e^{-3kt} \to 0$	B1	clear indication that $e^{-3kt} \rightarrow 0$ so, for example,
			$x = (1 - e^{-3kt})/(1 + 2e^{-3kt}) \rightarrow 1/1 = 1$		accept as a minimum $(x \rightarrow) \frac{1-0}{1+0} = 1$ or $e^{-3kt} \rightarrow 0 \Longrightarrow (x \rightarrow) 1$ (NB
					substitution of large values of t with no further explanation is B0)
				[5]	
		OR	$\frac{1-x}{1+2x} = e^{-3kt}$	B1	
			$1 + 2x = e^{-3kt} + 2xe^{-3kt}$	M1*	Multiplying up and expanding (condone one error)
			$x(1+2e^{-3kt})=1-e^{-3kt}$	M1dep*	Factorising their x terms correctly
			$x = (1 - e^{-3kt})/(1 + 2e^{-3kt}) *$	A1	www (\mathbf{AG}) – final B mark as in scheme above

C	Questi	on	Answer	Marks	Guidance
2	(i)		EITHER		
			$x = e^{3t}, y = te^{2t}$	B1	soi
			$dy / dt = 2te^{2t} + e^{2t}$	M1	Their $dy/dt \div dx/dt$ in terms of t
			$\Rightarrow dy/dx = (2te^{2t} + e^{2t})/3e^{3t}$	A1	oe cao allow for unsimplified form even if subsequently cancelled incorrectly ie can isw
			when $t = 1$, $dy/dx = 3e^2/3e^3 = 1/e$	A1	cao www must be simplified to 1/e oe
			OR		
			$3t = \ln x, \ y = \frac{\ln x}{3} e^{2/3\ln x} = \frac{x^{2/3} \ln x}{3}$	B1	Any equivalent form of y in terms of x only
			$dy / dx = \frac{1}{3} x^{2/3} \frac{1}{x} + \ln x \frac{2}{9} x^{-1/3}$	M1	Differentiating their <i>y</i> provided not eased ie need a product including
			3^{\prime} x^{\prime} 3^{\prime} x^{\prime} 9^{\prime}		ln kx and x^p and subst $x = e^{3t}$ to obtain dy/dx in terms of t
			$=\frac{1}{3e^{t}}+\frac{2t}{3e^{t}}$	A1	oe cao
			dy/dx = 1/3e + 2/3e = 1/e	A1	www cao exact only must be simplified to $1/e$ or e^{-1}
				[4]	
2	(ii)		$3t = \ln x \Longrightarrow t = (\ln x)/3$	B1	Finding <i>t</i> correctly in terms of <i>x</i>
			$y = (\ln x) / 3e^{(2\ln x)/3}$	M1	Subst in y using their t
			$y = \frac{1}{3}x^3 \ln x$	A1	Required form $ax^b \ln x$ only
					NB If this work was already done in 5(i), marks can only be scored in 5(ii) if candidate specifically refers in this part to their part (i).
				[3]	

C	Questic	on	Answer	Marks	Guidance
3	(i)		Either $h = (1 - \frac{1}{2}At)^2 \Rightarrow dh/dt = -A(1 - \frac{1}{2}At)$	M1	Including function of a function, need to see middle step
			$= -A\sqrt{h}$	A1	AG
			when $t = 0$, $h = (1 - 0)^2 = 1$ as required	B1	
			OR		
			$\int \frac{\mathrm{d}h}{\sqrt{h}} = \int -A\mathrm{d}t$ $2h^{1/2} = -At + c$	M1	Separating variables correctly and integrating
			$2h^{1/2} = -At + c$	A1	Including <i>c</i> . [Condone change of <i>c</i> .]
			$h = \left(\frac{-At+c}{2}\right)^2$ at $t = 0, h = 1, 1 = (c/2)^2 \Longrightarrow c = 2, h = (1 - At/2)^2$	B1	Using initial conditions AG
				[3]	
3	(ii)		When $t = 20, h = 0$	M1	Subst and solve for A
			$\Rightarrow 1 - 10 A = 0, A = 0.1$	A1	cao
			When the depth is 0.5 m, $0.5 = (1 - 0.05t)^2$	M1	substitute $h=0.5$ and their A and solve for t
			\Rightarrow 1-0.05t = $\sqrt{0.5}$, t = (1 - $\sqrt{0.5}$)/0.05 = 5.86s	A1	www cao accept 5.9
				[4]	

Question	Answer	Marks	Guidance
3 (iii)	$\frac{dh}{dt} = -B \frac{\sqrt{h}}{(1+h)^2}$ $\Rightarrow \int \frac{(1+h)^2}{\sqrt{h}} dh = -\int B dt$	M1	separating variables correctly and intend to integrate both sides (may appear later) [NB reading $(1+h)^2$ as $1+h^2$ eases the question. Do not mark as a MR] In cases where $(1+h)^2$ is MR as $1+h^2$ or incorrectly expanded, as say $1+h+h^2$ or $1+h^2$, allow first M1 for correct separation and attempt to integrate and can then score a max of M1M0A0A0A1 (for $-Bt+c$) A0A0, max 2/7.
	EITHER, LHS		
	$\int \frac{1+2h+h^2}{\sqrt{h}} \mathrm{d}h$	M1	expanding $(1+h)^2$ and dividing by \sqrt{h} to form a one line function of h (indep of first M1) with each term expressed as a single power of h eg must simplify say $1/\sqrt{h+2h}/\sqrt{h} + h^2\sqrt{h}$, condone a single error for M1
		A 1	(do not need to see integral signs) $h^{-1/2} + 2h^{1/2} + h^{3/2}$
	$= \int (h^{-1/2} + 2h^{1/2} + h^{3/2}) \mathrm{d}h$	A1	$n^{n-1} + 2n^{n-1} + n^{n-1}$ cao dep on second M only -do not need integral signs
	OR ,LHS, EITHER		
	$(1+2h+h^2)2h^{1/2} - \int 2h^{1/2}(2+2h)dh$	M1	using $\int u dv = uv - \int v du$ correct formula used correctly, indep of first
	jj		M1 condone a single error for M1 if intention clear
	OR		
	$h^{1/2} + h^{3/2} + \frac{h^{5/2}}{3} + \int \frac{1}{2} h^{-3/2} (h + h^2 + \frac{h^3}{3}) dh$	A1	cao oe
	$2h^{1/2} + \frac{4h^{3/2}}{3} + \frac{2h^{5/2}}{5}$	A1	cao oe, both sides dependent on first M1 mark
	=-Bt+c	A1	cao need $-Bt$ and c for second A1 but the constant may be on either side
	$\Rightarrow 2h^{1/2} + 4h^{3/2}/3 + 2h^{5/2}/5 = -Bt + c$		
	When $t = 0$, $h = 1 \implies c = 56/15$	A1	from correct work only (accept 3.73 or rounded answers here but not for
			final A1) or $c = -56/15$ if constant on opposite side.
	$\Rightarrow h^{1/2}(30 + 20h + 6h^2) = 56 - 15Bt *$	A1	NB AG must be from all correct exact work including exact <i>c</i> .
		[7]	

	Question		Answer	Marks	Guidance
3	(iv)		h = 0 when $t = 20$	M1	Substituting $h = 0, t = 20$
			$\Rightarrow B = 56/300 = 0.187$	A1	Accept 0.187
			When $h = 0.5$ $56 - 2.8t = 29.3449$	M1	Subst their $h = 0.5$, ft their B and attempt to solve
			$\Rightarrow t = 9.52s$	A1	Accept answers that round to 9.5s www.
				[4]	

Q	Question	n Answer	Marks	Guidance
4	(i)	v dv/dx + 4x = 0		
		$\int v \mathrm{d}v = -\int 4x \mathrm{d}x$	M1	separating variables and intending to integrate
		$\frac{1}{2}v^2 = -2x^2 + c$	A1	oe condone absence of c. [Not immediate $v^2 = -4x^2 (+c)$]
		When $x = 1$, $v = 4$, so $c = 10$	B1	finding c , must be convinced as AG, need to see at least the statement given here oe (condone change of c)
		so $v^2 = 20 - 4x^2 *$	A1	AG following finding c convincingly
				Alternatively, SC $v^2=20-4x^2$,
				by differentiation, $2v dv/dx = -8x$
				vdv/dx + 4x = 0 scores B2
				if , in addition, they check the initial conditions a further B1 is scored (ie 16=20-4). Total possible 3/4.
			[4]	
4	(ii)	$x = \cos 2t + 2\sin 2t$		
		when $t = 0$, $x = \cos 0 + 2 \sin 0 = 1^*$	B1	AG need some justification
		$v = dx/dt = -2\sin 2t + 4\cos 2t$	M1	differentiating, accept $\pm 2,\pm 4$ as coefficients but not $\pm 1,\pm 2$ and not $\pm 1/2,\pm 1$ from integrating
			A1	cao
		$v = 4 \cos 0 - 2 \sin 0 = 4^*$	A1	ww AG
			[4]	

Question	Answer	Marks	Guidance
4 (iii)	$\cos 2t + 2\sin 2t = R\cos(2t - \alpha) = R(\cos 2t \cos \alpha + \sin 2t \sin \alpha)$		SEE APPENDIX 1 for further guidance
	$R = \sqrt{5}$	B1	or 2.24 or better (not \pm unless negative rejected)
	$R\cos\alpha = 1, R\sin\alpha = 2$	M1	correct pairs soi
	$\tan \alpha = 2,$	M1	correct method
	$\alpha = 1.107$	A1	cao radians only, 1.11 or better (or multiples of π that round to 1.11)
	$x = \sqrt{5}\cos(2t - 1.107)$		
	$v = -2\sqrt{5}\sin(2t - 1.107)$	A1	differentiating or otherwise, ft their numerical <i>R</i> , α (not degrees) required form SC B1 for $v = \sqrt{20} \cos(2t + 0.464)$ oe
	EITHER $v^2 = 20\sin^2(2t - \alpha)$		
	$20 - 4x^2 = 20 - 20\cos^2(2t - \alpha)$	M1	squarin their <i>v</i> (if of required form with same α as <i>x</i>), and <i>x</i> , and attempting to show $v^2 = 20 - 4x^2$ ft their <i>R</i> , α (incl. degrees) [α may not be specified].
	$= 20(1 - \cos^{2}(2t - \alpha)) = 20\sin^{2}(2t - \alpha)$ so $v^{2} = 20 - 4x^{2}$	A1	cao www (condone the use of over-rounded α (radians) or degrees)
	OR multiplying out $v^2 = (-2\sin 2t + 4\cos 2t)^2$ = $4\sin^2 2t - 16\sin 2t\cos 2t + 16\cos^2 2t$ and $4x^2 = 4(\cos^2 2t + 4\sin 2t\cos 2t + 4\sin^2 2t)$ = $4\cos^2 2t + 16\sin 2t\cos 2t + 16\sin^2 2t$ (need middle term) and attempting to show that $v^2 + 4x^2 = 4(\sin^2 2t + \cos^2 2t) + 16(\cos^2 2t + \sin^2 2t)$ = $4 + 16 = 20$ (or $20 - 4x^2 = v^2$) oe	M1	differentiating to find v (condone coefficient errors), squaring v and x and multiplying out (need attempt at middle terms) and attempting to show $v^2 = 20 - 4x^2$
	so $v^2 = 20 - 4x^2$	A1	cao www
		[7]	

(Question	Answer	Marks	Guidance
4	(iv)	$x = \sqrt{5}\cos(2t - \alpha) \text{ or otherwise}$ $x \max = \sqrt{5}$	B1	ft their R
		when $\cos(2t - \alpha) = 1$, 2t - 1.107=0, 2t = 1.107	M1	oe (say by differentiation) ft their α in radians or degrees for method only
		t = 0.55	A1 [3]	cao (or answers that round to 0.554)

Q	uestion	answer	Marks	Guidance
5	(i)	$\mathrm{d}V/\mathrm{d}t = k\sqrt{V}$	B1	cao condone different k (allow MR B1 for $= kV^2$)
		$\Rightarrow V = (\frac{1}{2} kt + c)^2$ $\Rightarrow dV/dt = 2(\frac{1}{2} kt + c).\frac{1}{2} k$	M1	$2(1/2 kt + c) \times \text{constant}$ multiple of k (or from multiplying out oe; or implicit differentiation)
		$=k(\frac{1}{2}kt+c)$	A1	cao www any equivalent form (including unsimplified)
		$=k\sqrt{V}$	A1	
				Allow SCB2 if $V=(1/2 kt + c)^2$ fully obtained by integration including convincing change of constant if used Can score B1 M0 SCB2
			[4]	
	(ii)	$(\frac{1}{2}k+c)^2 = 10\ 000 \Rightarrow \frac{1}{2}k+c = 100$	B1	substituting any one from $t = 1$, $V = 10,000$ or $t = 0$, $V = 0$ or $t = 2$, V = 40,000 into squared form or rooted form of equation (Allow $-/\pm 100$ or $-/\pm 200$)
		$(k+c)^{2} = 40\ 000 \implies k+c = 200$ $\implies \frac{1}{2}k = 100$	B1	substituting any other from above
		\Rightarrow $k = 200, c = 0$	M1	Solving correct equations for both www (possible solutions are (200,0), (-200,0), (600, -400), (-600,400) (some from -ve root))
		$\Rightarrow V = (100t)^2 = 10000t^2$	A1	either form www SC B2 for $V = (100t)^2$ oe stated without justification SCB4 if justification eg showing substitution SC those working with $(k + c)^2 = 30,000$ can score a maximum of B1B0 M1A0 (leads to $k \approx 146$, $c \approx 26.8$)
			[4]	